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Abstract

European freshwater ecosystems have undergone significant human-induced and environ-

mentally-driven variations in nutrient export from catchments throughout the past five

decades, mainly in connection with changes in land-use, agricultural practice, waste water

production and treatment, and climatic conditions. We analysed the relations among con-

centration of total phosphorus (TP) in the Slapy Reservoir (a middle reservoir of the Vltava

River Cascade, Czechia), and socio-economic and climatic factors from 1963 to 2015. The

study was based on a time series analysis, using conventional statistical tools, and the iden-

tification of breaking points, using a segmented regression. Results indicated clear long-

term trends and seasonal patterns of TP, with annual average TP increasing up until 1991

and decreasing from 1992 to 2015. Trends in annual, winter and spring average TP concen-

trations reflected a shift in development of sewerage and sanitary infrastructure, agricultural

application of fertilizers, and livestock production in the early 1990s that was associated with

changes from the planned to the market economy. No trends were observed for average TP

in autumn. The summer average TP has fluctuated with increased amplitude since 1991 in

connection with recent climate warming, changes in thermal stratification stability, increased

water flow irregularities, and short-circuiting of TP-rich inflow during high flow events. The

climate-change-induced processes confound the generally declining trend in lake-water TP

concentration and can result in eutrophication despite decreased phosphorus loads from

the catchment. Our findings indicate the need of further reduction of phosphorus sources to

meet ecological quality standards of the EU Water Framework Directive because the climate

change may lead to a greater susceptibility of the aquatic ecosystem to the supply of

nutrients.

Introduction

The present trends in the quality of aquatic ecosystems generally reflect those of socio-eco-

nomic and climate conditions [1–3]. The relationship between water quality and human-

induced environmental alterations has become more pronounced during past five decades

[1, 4], and has manifested through an elevated nutrient loading into water bodies and
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deterioration of surface waters [5–7]. Agricultural activities (application of fertilizers, livestock

production, soil cultivation), population growth, and infrastructure development (connection

to sewerage and wastewater treatment facilities, increasing treatment efficiency of wastewaters)

have been important socio-economic factors influencing nutrient balance in numerous catch-

ments for more than a century [8–11] and can be responsible for the development of eutrophi-

cation [1, 12]. Additionally, recent climate change has become an important factor that affects

the nutrient dynamics of catchments [13, 14] by changing surface water temperatures [15–17],

frequency and amount of precipitation [14, 18, 19], seasonality and magnitude of water flows

[12, 16], and the duration of thermal stratification of lakes [5, 17, 20, 21].

Changes in nutrient inputs have cascading effects across aquatic food webs through various

direct and indirect interactions [22]. Despite the recent increase in attempts to regulate the

production and application rate of nutrients (nitrogen, N; and phosphorus, P) in economic

sectors, i.e. Nitrate Directive (ND 91/676/EEC), Urban Wastewater Treatment Directive

(UWTD 91/271/EEC), and European Water Framework Directive (WFD 2000/60/EC), prob-

lems of anthropogenic eutrophication still represent an important issue worldwide [8, 22–26].

The high risk of eutrophication is especially prominent in catchments where runoff is inten-

sively regulated by dams, and those affected by human activities like urbanisation or agricul-

ture [12].

In many central European catchments, P concentrations increased from the 1960s to 1980s

and then declined reflecting the changes in human activities and regional socio-economic con-

ditions (e.g., [27–31]). However, several studies indicate that in-lake P concentrations and tro-

phic conditions reflect not only the P-load changes but also are influenced by processes in the

lake ecosystem that can either strengthen [32, 33] or weaken [34, 35] the decreasing P-load

trends in the inflow. Climate change is a factor that can act both at the level of P export from

the catchment and at the level of processes in the lake ecosystem. For example, the expected

variations in frequency and intensity of precipitation might increase P export from the catch-

ment diffuse sources [31, 36, 37]; on the other hand, implementation of anti-erosion protec-

tion measures can reduce P loads from agricultural areas [13, 29, 38]. But, as a whole, it can be

concluded that the relationships between trends in P concentrations in surface waters and

socio-economic and climate variables still have been poorly evaluated at the long-term scale,

despite the high importance of P for the eutrophication of freshwaters [4, 39, 40].

The aim of our study was to analyse long-term variations in total phosphorus (TP) concen-

tration in the Slapy Reservoir (SL), i.e. a middle reservoir in the chain of reservoir at the Vltava

River, Czechia, and socio-economic and climatic factors from 1963 to 2015. Similar long-term

datasets are rare, and hence, of great importance due to the possibility to test various hypothe-

ses linking water quality and plankton ecology to the climate-driven and human-induced

changes [41–43] that differs from other studies on short term P data in lakes [32]. In our

study, we tested the hypothesis that long-term TP concentrations in SL reflect the key catch-

ment activities causing P loss into the river network and also the recent climate warming by

influencing the seasonality of P availability and in the aquatic ecosystem.

Materials and methods

Study site description

The upper Vltava River catchment (~13,000 km2) is typical for the Central European region in

terms of the socio-economic development and environmental conditions [10, 11, 44]. The

Vltava River is regulated by a cascade of reservoirs that are primarily used for hydropower pro-

duction, flood protection and water supply [45]. The catchment of SL (12,968 km2, elevation

of 271−1,378 m a.s.l.) covers the entire upper Vltava basin and stretches from the Bohemian

Socio-economic and changing-climate impacts on concentration of phosphorus in lake
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Forest mountain range between Czechia and Austria/Germany to the Slapy dam, built ~40 km

south (and upstream) of Prague and finished in 1955 [46] (Fig 1). It is coincident in size with

the administrative South Bohemia region, with available statistical data on agricultural and

human activities. The Orlı́k Reservoir (altitude of 354 m a.s.l., surface area of 27.3 km2, volume

of 0.717 km3, dam ~70 km south of Prague) was built upstream and close to SL and put in full

operation in 1963 [46]. SL is a 42 km long, narrow (mean width is ca. 310 m) and deep (maxi-

mum depth is 53.5 m and average depth is 23.2 m) fjord-like water body. At the operational

level of 270.6 m a.s.l., its volume is 0.27 km3 and its surface area is 11.6 km2. The average

Fig 1. Location (a,b) and characteristics (c) of the Slapy Reservoir catchment.

https://doi.org/10.1371/journal.pone.0186917.g001
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(1963–2015) water flow (Q) at the dam was 90 m3 s-1. The outflow from SL is commonly via

the intakes of the hydropower station at a depth of ca. 40 m. The inflow into SL is largely

formed by the discharges from the low outlets of the Orlı́k Reservoir, which modifies the sea-

sonal temperature pattern: the inflow water is relatively colder during the spring and summer

while it is warmer in the autumn and winter compared to the water temperature (Tw) in the

Vltava River upstream from the Orlı́k Reservoir [45]. Therefore, during the vegetation period

(from late spring, when the air temperature (Ta) increases above ca. 10˚C), a cold inflow water

passes SL through the hypolimnion, with restricted mixing to its epilimnion. In contrast, the

entire SL water column is mixed from autumn to spring and the lake is usually ice-free during

the winter [45, 47]. SL can therefore be considered as a monomictic water body despite its geo-

graphic location.

The locality of SL has a climate typical of the temperate zone, with annual average Ta of

8.2˚C and annual precipitation of 582 mm during 1963–2015 (the Tábor meteorological sta-

tion; data by the Czech Hydrometeorological Institute (CHMI)). Agricultural land, forests

(mostly plantations of Norway spruce, Picea abies), surface waters, and urban areas cover 52%,

42%, 3%, and 3% of the catchment, respectively. Point source pollution is primarily due to

wastewater discharges from municipalities and wastewater treatment plants (WWTP) and dif-

fuse pollution is mainly from agricultural land [10, 11].

Socio-economic indicators

The socio-economic development of the SL catchment shown changes typical for central and

eastern European countries, i.e. shifts from the market to the planned economy in the 1950s

and a return to the market economy in the 1990s [10, 44]. Factors controlling nutrient exports

from agricultural lands in this large heterogeneous catchment have been documented since

the 1900s, namely factors responsible for trends in N and sulphate concentrations in SL [10,

11, 44]. Socio-economic indicators were selected in order to represent the national economic

development, regional agricultural activity, population growth and infrastructure development

[10, 11, 26] (Table 1).

Environmental indicators

The SL water samples were taken in three-week intervals at the Živohošť Bridge (49.7657N,

14.4134E; 8.8 km upstream from the dam) ca. 0.5 m below the surface from 1963 to 2015. Sam-

ples were immediately filtered through a 200-μm polyamide sieve to remove zooplankton and/

or other coarse particles, transported to the laboratory and analyzed for TP within a day after

sampling. The TP was determined using perchloric acid digestion followed by the molybdate

method according to Popovský [48] in 1963–1991, then by the semi-micro modification of

this method [49]. In both modifications, samples were concentrated by evaporation (with

diluted perchloric acid at ~100˚C) prior to digestion in order to obtain a detection limit of

~1 μg l–1 P. Both modifications of the method provided almost identical results [49]. During

years 2004 and 2006, TP concentration was analysed in samples taken at the same site from the

depth of 40 m by a Friedinger sampler. The chlorophyll-a (Chla) was determined in unfiltered

integrated samples from depths of 0 to 3 m by spectrophotometric methods after aceton

extraction according to Strickland and Parsons [50] or Lorenzen [51] in periods between

1963–1969 and 1979–2015, respectively. Tw was measured at the depth of 0.5 m during the

water sampling (Table 1). The daily Q data were originated from the operating records at the

SL dam and were obtained from the Vltava River Board, state enterprise, Prague (Table 1).

Daily average Ta data from three long-term operated meteorological stations in the SL catch-

ment, namely Tábor (49.4362N, 14.6581E; altitude of 459 m a.s.l.; World Meteorological
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Organization (WMO) ID 11582), České Budějovice (48.9519N, 14.4687E; altitude of 395 m a.s.

l.; WMO ID 11546) and Churáňov (49.0682N, 13.6151E; altitude of 1,120 m a.s.l.; WMO ID

11457) (Fig 1) were obtained from the CHMI (Table 1).

Data analysis

The data on Ta, Q, and Tw were recalculated into monthly, seasonal and annual average values,

applying standard arithmetic average function. Seasons were defined as winter (December–

Table 1. Socio-economic and environmental indicators.

Indicator Description Unit Time period Source

Socio-economic indicators

Gross domestic

product (GDP)

Characteristics of the general trend of national

economic development of Czechia in a real price

value

USD per

person

Annual, from 1970

to 2015

OECD data base (https://data.

oecd.org/gdp/gross-domestic-

product-gdp.htm)

Organic fertilizers (Fo) Application of phosphorus through organic

fertilizers in the South Bohemian region per area of

agriculture land

kg P per

hectare

Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Mineral fertilizers (Fm) Application of mineral phosphorus fertilizers in the

South Bohemian region per area of agriculture

land

kg P per

hectare

Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Livestock density on

agricultural land (LS)

Characterized by animal units (AU = 500 kg of live

weight; i.e., one cow or horse = 1 AU, one pig = 0.2

AU, one sheep or goat = 0.15 AU and one

poultry = 0.004 AU) in the South Bohemian region

AU per

hectare

Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Population (PO) Population of the South Bohemian region Inhabitants Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Connection to

sewerage (XS)

Share of the population connected to sewerage in

the SL catchment

% Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Connection to WWTP

(XW)

Share of the population connected to wastewater

treatment facilities in the SL catchment

% Annual, from 1963

to 2015

Czech Statistical Office (https://

www.czso.cz)

Phosphorus load to

surface waters via

wastewater (Pload)

Determination based on specific P load to

wastewater from the population, share of the

population connected to sewerage systems and

sewage treatment facilities, type of wastewater

treatment technologies (mechanical, biological,

chemical), and evidence of P discharges from

WWTPs in the SL catchment

Mg P per year Annual, from 1963

to 2015

Calculated according to [11]

Specific P load to

wastewater from

population (Pspec)

Human waste contribution to P load in municipal

wastewater in the SL catchment

g P per

person per

day

Annual, from 1963

to 2015

Measured in sewerage of

representative municipalities in the

SL catchment

Environmental indicators

Total phosphorus (TP) Samples taken from a depth of 0.5 m (epilimnion)

in SL

μg L-1 Three-week

intervals from 1963

to 2015

Measured

Chlorophyll-a (Chla) Integrated samples taken from depths 0–3 m in

surface layer (epilimnion) in SL

μg L-1 Three-week

intervals in 1963–

1969 and 1979–

2015

Measured

Water temperature (Tw) Water temperature measured at the 0.5 m depth

(epilimnion) in SL

˚C Three-week

intervals from 1963

to 2015

Measured

Air temperature (Ta) Data from meteorological stations in the SL

catchment, i.e., Tábor, České Budějovice and

Churáňov

˚C Daily average, from

1963 to 2015

Czech Hydrometeorological

Institute (http://portal.chmi.cz/)

Water flow (Q) daily data on the inflow into SL m3 s-1 Daily average, from

1963 to 2015

Vltava River Board, (Povodı́ Vltavy,

státnı́ podnik: http://voda.gov.cz/)

https://doi.org/10.1371/journal.pone.0186917.t001
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February), spring (March–May), summer (June–August) and autumn (September–Novem-

ber). The log-normality of the data was tested using the Kolmogorov–Smirnov test. Trends for

the seasonal data were identified using the seasonal Kendall test, which is a non-parametric

technique for detecting monotonic trends [52]. The seasonal Kendall test is particularly useful

for monitoring data because the test is not influenced by missing values and is insensitive to

outliers. The relationships between variables were evaluated using linear regressions and Pear-

son correlations. Breaking points in the long-term data were identified by applying segmented

regression (SegReg program, developed by Institute for Land Reclamation and Improvement,

Netherlands, http://www.waterlog.info/segreg.htm). The segmented regression has been used

in water quality studies to detect breaking points in different datasets [53–55]. This regression

is based on the use of a linear predictor represented by two or more straight lines connected by

an unknown breaking point [54]. Time was used as an independent variable and TP concen-

tration, Ta, Tw, and Q were dependent variables. All statistical analyses were performed at a

95% confidence level (p< 0.05) at least.

Results

Long-term and seasonal variations of total phosphorus concentration

Individually measured TP concentrations varied greatly (between 10 and 118 μg L–1) in SL

during the 53-year period of observation (Fig 2). Annual average TP concentrations ranged

during the study period from 31 to 77 μg L-1 and were similar to their annual median values

(35–83 μg L-1). The Kendall test indicated no statistically significant time trends in the annual

and seasonal average TP concentrations for the whole (1963–2015) study period. However, the

segmented regression indicated a breaking point in annual average TP concentrations in 1992.

The Kendall test confirmed two significant trends (p< 0.001) of annual average TP concentra-

tions; the first had a slope of 0.55 mg L-1 yr-1 in 1963–1991 and the second had a slope of -0.85

mg L-1 yr-1 in 1992–2015. The epilimnetic concentrations of Chla (Fig 2) closely correlated

with TP concentrations (Pearson correlation, r = 0.59, p< 0.01).

Fig 2. Time-series of total phosphorus (TP) and chlorophyll-a (Chla) concentrations in the Slapy Reservoir during 1963–2015. The black

line is the annual average TP concentration; points are individually measured TP concentrations with indicated sampling seasons; the red line is the

annual average concentration of Chla.

https://doi.org/10.1371/journal.pone.0186917.g002
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The seasonal average TP concentrations exhibited large differences, with the lowest values in

summer and the highest ones in winter (Fig 3). Moreover, the segmented regression revealed

two significant trends in the winter and spring average TP concentrations, with a breaking

point in 1992 when the increasing trend (1963–1991) reversed to a decreasing trend (1992–

2015) (Fig 3). Summer and autumn average TP concentrations were more dispersed, with no

significant trends or breaking points. However, within the scatter of summer TP concentra-

tions, two opposite significant trends were identified when the TP values were divided into two

groups according to the average summer Q, i.e. the trend was positive for Q> 100 m3 s-1, but

negative for Q< 100 m3 s-1 (Fig 3).

Regression analysis of summer average TP and Q values revealed that the TP values were inde-

pendent of Q from 1963 to 1991, while positively correlated with Q from 1992 to 2015 (Fig 4).

The measurements of TP concentrations in the SL water column profile in 2004 and 2006

indicated gradually increasing TP in the hypolimnion during the May–October period of ther-

mal stratification and showed significant increases in the epilimnetic TP after high Q events in

2006, followed by an elevated Chla in the epilimnion (Fig 5).

Socio-economic indicators

The socio-economic indicators have changed considerably during the last half-century, show-

ing the highest changes between 1990 and 2006 (see, e.g. gross domestic product, GDP, in Fig

6A). Agricultural production markedly intensified during 1963–1990 when the application of

Fig 3. Seasonal average total phosphorus concentrations (TP) in the Slapy Reservoir during 1963–2015. Lines indicate significant linear

trends (p < 0.05).

https://doi.org/10.1371/journal.pone.0186917.g003
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P in mineral and organic fertilizers increased from 12 to 37 kg ha-1 and from 15 to 20 kg ha-1,

respectively, and the livestock numbers (animal units, AU) increased from 0.8 to 1.1 AU ha-1.

In the next period, during 1991–2015, the application of P in mineral and organic fertilizers

decreased to 6 and 10 kg ha-1, respectively, and livestock numbers dropped to 0.5 AU ha-1,

reaching a lower level than in 1963 (Fig 6B). The population in the SL catchment continued

growing slightly during the whole study period while the sanitary infrastructure rapidly devel-

oped and the proportion of the population connected to sewerage increased faster than the

proportion of wastewater treated in WWTPs (Fig 6C). The proportion of population con-

nected to sewerage and sewerage with WWTPs reached 84% and 81%, respectively, by 2015

(Fig 6B). The specific per-capita production of P to wastewater (Pspec) increased from 2.0 to

2.9 g person–1 day–1 and the P loads to surface waters increased via wastewater from ~100 to

420 Mg year-1 in 1963–1990 while these indicators decreased to 1.8 g person–1 day–1 and to

200 Mg year-1, respectively, until 2015 (Fig 6D).

The Pearson correlation indicated positive relationships between the annual average TP

concentrations and P load to surface water via wastewater, application of organic fertilizers

and livestock while there was a negative relationship between the TP and gross domestic prod-

uct during 1963–2015 (Table 2). For the partial periods, however, the situation was different.

In 1963–1990, the TP concentrations were positively correlated with the gross domestic

Fig 4. The relationships between summer average water flow (Q) and total phosphorus concentration (TP) in the Slapy Reservoir during

1963–1991 and 1992–2015. The red line is a significant (p < 0.001) trend in 1992–2015; the broken gray line is an insignificant (p > 0.05) trend in

1963–1991.

https://doi.org/10.1371/journal.pone.0186917.g004
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product, population connected to WWTP (XW) and sewerage (XS), while these relationships

became negative in 1991–2015 (Table 2).

Environmental indicators

The Kendall test applied to seasonal average data indicated that Tw in SL increased with a slope

of 0.03˚C yr-1 (p< 0.05) during the last 53 years. The segmented regression revealed a break-

ing point in 1987 for the annual average Tw data. For the seasonal average Tw, significant

increasing trends were indicated by Pearson correlation for each season in the period 1991–

2015 (Fig 7).

Similar to Tw, Ta as measured at three stations in the SL catchment exhibited a significant

increasing trend in 1991–2015 (Fig 8).

The Kendall test and segmented regression indicated no statistically significant trends

or breaking points for annual or seasonal data on Q. It was, however, observed that the

distributions of monthly average Q were significantly different (p < 0.001 according to

the Kolmogorov-Smirnov test) in the periods of 1963–1990 and 1991–2015 (Fig 9A),

with higher frequencies of less-than-median Q but more frequent extreme Q in the latter

period (Fig 9B). The extremely high Q events in the period of 1991–2015 occurred mainly

in spring and summer (Fig 9A).

Discussion

The results show significant relationships between TP concentrations in SL and socio-eco-

nomic and climatic factors in its catchment during the period 1963–2015, hence confirming

that our working hypothesis is valid. We found that trends in winter and spring TP concentra-

tions in SL were related to socio-economic changes in the South Bohemian region. Significant

positive relationships between TP concentrations vs. P loads from sanitary systems, application

of mineral and organic fertilizers, and livestock production indicated that these drivers had a

Fig 5. Total phosphorus (TP) and chlorophyll-a (Chla) in the Slapy Reservoir during two years with different water flow. TP-0.5 m and TP-40 m are

TP concentrations in the epilimnion and the hypolimnion, respectively; Chla is in the epilimnion (0–3 m); Q is water flow; grey horizontal bars denote periods

with a thermally stratified water column.

https://doi.org/10.1371/journal.pone.0186917.g005

Socio-economic and changing-climate impacts on concentration of phosphorus in lake
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strong impact on TP variation in SL. The increasing and decreasing trends of winter and

spring average TP concentrations during 1963–1991 and 1992–2015, respectively, (Fig 3) cor-

responded well to two socio-economic stages in Czechia, i.e. the development of agriculture

and infrastructure (sewerage and sewage treatment facilities) in the years 1963–1990, followed

by the reduction of agricultural activity, intensive development of wastewater treatment

Fig 6. Socio-economic indicators of the Slapy catchment in 1963–2015. (a) Gross domestic product (GDP); (b) agricultural activity: application of

organic (Fo) and mineral (Fm) fertilizers, livestock (LS); (c) infrastructure development: number of population (PO), population connected to sewerage (Xs)

and connected to WWTP (Xw); and (d) specific per-capita P contribution to wastewater (Pspec) and P loading from sanitary systems to surface waters (Pload).

https://doi.org/10.1371/journal.pone.0186917.g006

Table 2. Pearson correlation between the annual average concentrations of total phosphorus (TP) in the Slapy Reservoir and socio-economic

indicators its catchment during different time periodsa.

TP in time period Socio-economic indicators

Pload Pspec GDP XW XS Fo Fm LS

1963–2015 0.53** 0.23 (-)0.27* 0.12 0.22 0.39** 0.11 0.32*

1963–1990 0.64** 0.56** 0.64** 0.64** 0.65** 0.62** 0.54** 0.63**

1991–2015 0.61** 0.65** (-)0.59** (-)0.50** (-)0.61** 0.56** 0.40* 0.57**

a numbers are r, the Pearson correlation criteria; negative sign (-) indicates negative correlation; asterisks indicate significance

*, p < 0.05

**, p < 0.01; the significant values are in the bold. For abbreviations see Table 1.

https://doi.org/10.1371/journal.pone.0186917.t002
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infrastructure, and regulation of consumption and application of P-containing products in

agriculture and households between 1991 and 2015 (Fig 6B–6D).

The economic development in Czechia in 1963–1990 was based on the planned economy

with the intensification of agricultural production [11, 56], increasing use of fertilizers, build-

ing of sanitary infrastructure and use of phosphate detergents and was an important driver of

P loads in the SL catchment. This was confirmed by a simultaneous growth of TP concentra-

tions, gross domestic product and P loads from agriculture and wastewater (Fig 6A, 6B and

6D), as well as by the positive correlation between these variables during this period (Table 2).

The period of 1991–2015 was characterized by a simultaneous decrease in P loads from agri-

culture and untreated sewage (Fig 6B and 6C). This reduction occurred despite the continued

rapid growth of the Czech gross domestic product (Fig 6A) and was associated with concur-

rent influences of various socio-economic factors. One of them was a temporary recession and

Fig 7. Long-term trends in the seasonal average water temperature (Tw) in the Slapy Reservoir. Open and black points correspond to the years

1963–1990 and 1991–2015, respectively; regression lines indicate significant linear trends (p < 0.05) during 1991–2015.

https://doi.org/10.1371/journal.pone.0186917.g007
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restructuring of the economy [11]. Agricultural production rapidly decreased, mainly because

of the rising prices of agricultural inputs (labour, fertilizers, techniques, etc.) and the absence

of agricultural subsidies. A particularly marked decline was observed for the numbers of cattle

and pigs, which resulted in the decrease of manure and slurry production [11]. The other

important factor was a transformation in environment-related legislation that has been partly

based on the ‘polluter-pays’ principle [57]. In 1991–2015, important environmental legislation

changes included: (i) regulations of wastewater treatment efficiency and limits for P concentra-

tion in the treated wastewater, which were gradually set for all sizes of WWTPs with fees for

the amount of discharged P being introduced for significant polluters (> 3 Mg of P per year)

since 2005 [58]; (ii) the P load in wastewater originating from detergents was moderately

reduced due to a voluntary agreement of the Czech Ministry of Environment with the produc-

ers of detergents in 1995, and eventually diminished by a legislative ban of phosphate in deter-

gents for retail in 2006 [56, 58]; (iii) an agri-environment scheme that was implemented by the

Czech Ministry of Agriculture after the accession of Czechia to the EU in 2004, which reduced

Fig 8. The annual air temperature (Ta) measured at meteorological stations in South Bohemia (1963–2015). Open and black points

correspond to the years 1963–1990 and 1991–2015, respectively; regression lines indicate significant linear trends (p < 0.05) during 1991–2015.

https://doi.org/10.1371/journal.pone.0186917.g008

Fig 9. Monthly average water flow (Q) in the Slapy Reservoir. (a) Time-series of values during 1963–2015 (months with episodic high Q events are

indicated) and (b) cumulative relative frequency distribution plots in 1963–1990 and 1991–2015.

https://doi.org/10.1371/journal.pone.0186917.g009
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losses of P from agricultural areas to surface waters from soil erosion and application of

organic fertilizers [59].

A similar situation was observed in other European countries [60]. The legislative regula-

tions for wastewater treatment and the related development of sewage treatment infrastructure

in the late 1990s directly lead to a reduction of P discharge in many European catchments [61,

62]. In the agricultural sector, organic and mineral fertilizers were applied in excess in all Euro-

pean countries until 1980 to increase crop yields, which resulted in an intensive accumulation

rate of P in the soil up to 15 kg ha-1 per year [62, 63]. Since the 1980s, inputs of fertilizers

decreased gradually in Western Europe and dropped sharply in Eastern Europe in the 1990s

[62]. However, despite reduced P emissions into the environment, soil and sediments may still

release the previously accumulated P liberated during organic matter decomposition or under

reducing conditions, but the importance of these sources has been decreasing [9, 62, 63].

The relationships between socio-economic trends in P sources and TP concentrations in SL

were apparent in winter and spring, but not in summer and autumn (Fig 3). This can be

explained by a stronger influence of additional drivers, e.g. Tw and Q, on TP variations during

summer and autumn. Tw controls the length of the vegetation period, which starts in SL gener-

ally in April and continues till September, depending on the stability of thermal stratification

[45]. The vegetation period in SL is characterized by the intensification of primary production

and P uptake in aquatic food webs, i.e. phytoplankton, periphyton, macrophytes, zooplankton

and fish [12]. The growth of their biomass is more pronounced during increased Tw and pro-

longed vegetation periods [64] and results in more depleted TP concentrations in the

epilimnion.

Our long-term observation revealed that the most significant increasing trend in Tw

occurred from 1991 to 2015 (Fig 7), which can be explained by increasing Ta (Table 1; Fig 8).

Similar shifts in the Tw regime in the late 1980s and early 1990s were previously detected in

numerous European surface waters, e.g. in Germany [65], Sweden [66] and Switzerland [67],

and were attributed to global climate change [67].

During the vegetation period, hydrology and biological activity (both affected by climate

change) are dominant drivers, affecting P retention and TP concentrations in the epilimnion

of stratified water bodies, including SL [23, 39, 68, 69]. Since the early 1990s, we observed that

the summer average TP concentrations in SL began to decrease during periods of low Q, but

increased when Q was high. No such relationship was detected in 1963–1991 (Fig 4). This phe-

nomenon may be primarily associated with hydrological changes since the 1990s when Q

began to fluctuate more, with both the frequency of low Q periods and the magnitude of high

Q events increasing. During low Q periods, thermal stratification was stable in the SL and the

epilimnetic TP was rapidly utilized by phytoplankton and removed by settling, thus enriching

the hypolimnetic TP pools [68, 69]. When a high Q event disrupted the thermal stratification,

P-rich hypolimnetic water was mixed into the epilimnion, which increased TP concentrations

in this productive zone. At the same time, the water retention time was shortened at high Q,

resulting in reduced retention of the inflow P and its short circuiting through the hypolimnia

of the Orlı́k and Slapy reservoirs, so that the TP concentrations in SL increased even more (Fig

5). It can be assumed that these processes proceeded previously to the 1990s as well, but their

effect was lower due to more balanced Q, hence not resulting in such large (and Q-dependent)

changes in the epilimnetic TP concentrations.

The trend of declining summer TP concentrations during dry periods (Fig 3), resulting

from decreased Q and prolongation of thermal stratification, has been observed elsewhere in

recent decades [64, 70, 71]. Additionally, the increasing tendency for disruptions to thermal

stratification due to storm events, resulting in increased nutrient supply to the epilimnion
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from deeper water layers, followed by eutrophication, was also detected in other water reser-

voirs [64, 72].

The high dispersion of the autumn average TP concentrations and the absence of any

trends were apparently caused by variable timing of the onset of the water column mixing at

the end of summer stratification. The autumn mixing of the SL water column occurred irregu-

larly from the end of August till October, depending on Q and weather conditions during par-

ticular years. High Q was usually associated with cold and rainy weather and resulted in early

mixing and increased TP concentrations in the SL surface water. In contrast, the epilimnetic

TP concentrations remained low in late summer and early autumn under conditions of low Q

and mild weather, which prolonged the duration of thermal stratification.

While the shifts in socio-economic development and climate conditions occurred mainly in

1990–1991, the breaking point of TP concentrations was found in 1992. This delay in the

response of water chemistry to the detected changes in P sources can be explained by water

residence time in SL and the upstream reservoirs, which can be up to one year [45].

Conclusions

Analysis of long-term data on P concentrations in SL showed that variations in the epilimnetic

TP concentrations had a clear seasonality and were associated with different stages of socio-

economic development and climate change drivers. The increasing and decreasing trends in

TP concentrations during 1963–1991 and 1992–2015, respectively, were detected in winter

and spring. These trends were mainly driven by changes in anthropogenic activities, such as P

loads from sanitary systems and agriculture. Changes in the Czech economy and environmen-

tal legislation obviously played significant roles in the reduction of P loads in 1992–2015. The

summer patterns of TP concentrations were more complex and primarily related to changes in

climate and hydrology that become apparent after 1991 (rising water temperature and increas-

ing frequency of low and extreme flows). Low Q supported longer periods of stratification and

low epilimnetic TP concentrations. In contrast, high Q events caused disruptions of thermal

stratification, mixing of deep (P-enriched) water layers with the epilimnion, and increased epi-

limnetic TP concentrations. Hence, the variability of summer TP concentrations has increased

and begun to be Q-dependent in SL since the early 1990s. This mechanism results in a para-

doxical situation when the summer epilimnetic TP concentrations may increase at high Q and

the SL epilimnion may become more eutrophic than in the past, despite the general decreases

in the external P loads and winter and spring average in-lake TP concentrations.

Our results demonstrate that climate change may lead to a greater susceptibility of aquatic

ecosystems to the supply of nutrients and results in elevated eutrophication even at stable or

decreasing external P loads. This conclusion highlights the necessity of further reductions of

external P sources. Therefore, water managers and policymakers should continue in their

efforts to eliminate P pollution in catchments, because the confounding effects of climate

change may cause the achievement of the necessary ecological quality standards under the EU

Water Framework Directive to become impossible without an additional reduction of P loads

to lakes.
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